
Code Conventions for the Python
Programming Language

File Suffixes

File Type Suffix
.py Python source
.pyc Python byte code
.pyd Python extension

modules (shared
libraries)

File Structure

1. File header describing encoding / authors /
copyright / etc.

2. Module documentation string.
3. Import statements.
4. Module properties, at least __version__.
5. Definition of constants.
6. Definition of module level variables, functions,

classes.
Separate these parts with two blank lines.
Limit the file length to 600 lines.

Source Code Encoding

• Use ASCII encoding
• If non-ASCII characters are required include

those using \x, \u or \U escape sequences.
Exception: Author names:

o Use the UTF-8 encoding.
o Indicate this encoding (PEP 263) in the

first line as follows:
coding: utf-8

Imports

• Each line should usually contain at most one
import statement.

• Import packages and modules only.
• Import grouping:

o Standard library imports.
o Third party imports.
o Application-specific imports.

• Separate import groups with a blank line.
• No relative imports.

Indentation

• Indent: 4 spaces.
• Don’t indent module level variables, classes,

functions.
• When an expression will not fit on a single line

(max. 120), break it according to these general
principles:

o Use implicit line continuation within (),
[], {} for a line break.

o Break after a comma.
o Break before an operator.
o Align the new line with the beginning

of the expression at the same level on
the previous line or use an indent of 4
spaces.

Whitespace

• Use a blank line between related parts of the
code and between methods of a class.

• Use two blank lines between module level
functions and classes.

• Use blank spaces:
o Between a keyword and a parenthesis.
o After commas in argument lists.
o Before and after binary operators.

• Don’t surround the = operator with blanks if it
is used to indicate default parameter values or
keyword arguments.

Comments

• Don’t explain what’s obvious from the code.
• Write comments in English.
• Use inline comments sparingly.
• Keep the comments up-to-date!

Here is a block comment.

x = x + 2 # This is an inline comment.

Documentation Strings

• Required for all public modules, functions,
classes, methods.

• Non-public stuff should have at least a one-line
documentation string after the definition.

• Separate documentation string and
implementation with a blank line.

• Use Sphinx mark-up to document parameters,
return values and exceptions.

""" One-line documentation string. """

"""
Multi-line documentation string.

Another comment.
"""

Statements

• Each line should contain at most one
statement.

• Limit the line length to 120 characters.
• Compound statements are multiple statements

on the same line and should NEVER be used.
The if-else class of statements should have the
following form:

if condition:
 statements
elif condition:
 statements
else:
 statements

Please avoid long if-else statements and use dictionaries
instead.
Please avoid unnecessary brackets around conditions.

Loop statements should have the following form:

for item in target_list:
 statements

for key, value in target_dict.iteritems():
 statements

while condition:
 statements

Exceptions

• Use class-based exceptions and inherit from
the built-in class Exception.

• Don’t simply catch Exception.
• Don’t use the empty except statement.
• A try-except statement should have the

following format:

try:
 statements
except ExceptionClass1, error:
 statements
except ExceptionClass2, error:
 statements

• Use the error.args to access the exception
arguments.

• Use the with statement to encapsulate clean-
up behaviour (available since Python 2.5):

with open("/file_path", "r") as file_object:
 print(file_object.read())

• Use except ExceptionClass as error: (available
since Python 2.6).

Classes

• Define all instance variables in __init__,
__new__ or setup (unit tests).

• First parameter of instance methods is self.
• First parameter of class methods is cls.
• Don’t document the first parameter of

methods or class methods.
• Structure of classes

o Class definition.
o Class documentation string.
o __init__ method.
o property statements
o Methods (functionally grouped).

Naming Conventions

Rules for Naming Example
Package and module names:
short, lowercase, words
separated by underscore, no
dashes

common, sdk,
logger_utils

Class names: nouns, camel
case
Use one leading underscore to
indicate an internal class.

_Raster, ImageSprite,
RasterDelegate

Test classes: see conventions
for class names but use the
TestCase suffix.

TestRaster,
TestImageSprite

Exception names: see
convention for class names but
use the Error suffix.

_InternalError,
ApplicationError

Methods: verbs, lowercase,
words separated by underscore

Use one leading underscore for
non-public methods.
Use two leading underscores to
prevent use in subclasses.
Use the test prefix for test
methods.

run, run_fast,
get_background,
_run_slow,
__run_slower,
test_run,
test_get_background

Instance variable names: see
methods but use nouns
instead.

width,
_parent_frame,
__secret_width

Function names: see methods

Use a leading underscore to
indicate an internal function.
Use trailing underscore to solve
naming conflicts.

read_file,
_calculate_width,
print_

Module variable, variable,
argument names: lowercase,
words separated by underscore
Use trailing underscore to solve
naming conflicts.

new_width,
property_

Constants have to be declared
on module level or class level
and are written in capital letters
separating words by
underscores.

TOTAL,
AND_OPERATOR

Sample Code

Author(s): Name user@dlr.de>

Copyright (c) 2008-2011, (DLR)
All rights reserved.

http://www.dlr.de/datafinder/

""" Module documentation string. """

import os

import ldap

from webdav.test.example import application

__version__ = "$LastChangedRevision$"

AND_OPERATOR = "and"
OR_OPERATOR = "or"

def return_something(parameter=4):
 """
 Here goes the description.

 :param parameter: parameter.
 :type newParameter: int

 :return: A simple integer value.
 :rtype: int
 """

 return new_parameter

class Multiply(object):
 """ Class documentation string. """

 def __init__(self):
 self.multiply_with = 3

 def multiply(self, value):
 """ Performs the calculation. """

 return value * self._multiply_with

	Code Conventions for the Python Programming Language
	File Suffixes
	File Structure
	Source Code Encoding
	Imports
	Indentation
	Whitespace
	Comments
	Documentation Strings
	Statements
	Exceptions
	Classes
	Naming Conventions
	Sample Code

